pyspark.sql.functions.forall¶
- 
pyspark.sql.functions.forall(col: ColumnOrName, f: Callable[[pyspark.sql.column.Column], pyspark.sql.column.Column]) → pyspark.sql.column.Column[source]¶
- Returns whether a predicate holds for every element in the array. - New in version 3.1.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- colColumnor str
- name of column or expression 
- ffunction
- (x: Column) -> Column: ...returning the Boolean expression. Can use methods of- Column, functions defined in- pyspark.sql.functionsand Scala- UserDefinedFunctions. Python- UserDefinedFunctionsare not supported (SPARK-27052).
 
- col
- Returns
- Column
- True if “all” elements of an array evaluates to True when passed as an argument to given function and False otherwise. 
 
 - Examples - >>> df = spark.createDataFrame( ... [(1, ["bar"]), (2, ["foo", "bar"]), (3, ["foobar", "foo"])], ... ("key", "values") ... ) >>> df.select(forall("values", lambda x: x.rlike("foo")).alias("all_foo")).show() +-------+ |all_foo| +-------+ | false| | false| | true| +-------+