| glm {SparkR} | R Documentation | 
Fits a generalized linear model, similarly to R's glm(). Also see the glmnet package.
glm(formula, family = gaussian, data, weights, subset, na.action,
  start = NULL, etastart, mustart, offset, control = list(...),
  model = TRUE, method = "glm.fit", x = FALSE, y = TRUE,
  contrasts = NULL, ...)
## S4 method for signature 'formula,ANY,DataFrame'
glm(formula, family = c("gaussian",
  "binomial"), data, lambda = 0, alpha = 0)
| formula | A symbolic description of the model to be fitted. Currently only a few formula operators are supported, including '~', '+', '-', and '.'. | 
| family | Error distribution. "gaussian" -> linear regression, "binomial" -> logistic reg. | 
| data | DataFrame for training | 
| lambda | Regularization parameter | 
| alpha | Elastic-net mixing parameter (see glmnet's documentation for details) | 
a fitted MLlib model
## Not run: 
##D sc <- sparkR.init()
##D sqlContext <- sparkRSQL.init(sc)
##D data(iris)
##D df <- createDataFrame(sqlContext, iris)
##D model <- glm(Sepal_Length ~ Sepal_Width, df)
## End(Not run)